Using Visualisation to understand
Data visualisation is an important step in data analysis to better understand the data. This is helps visualise the relationships better. In this post we will walk through majority of the graphs that can be plotted using matplotlib
Line Charts
Line charts are best to visualise features which change with time or series of data points. Eg, price changes, Speed, population etc
Code:
# Direct plot from a dataframe
df.head()
df.col.plot()
# matplotlib
import matplotlib.pyplot as plt
## Creating a graphs
### figure size
plt.figure(figize = (7,5))
### Title, x tile and y title
plt.title('test title', fontsize=20)
plt.xlabel('xl abel', fontsize=15)
plt.ylabel('ylabel', fontsize=15)
## ploting first 100 rows
df.loc[0:100,'GKHandling'].plot()
Bar Charts
Bar charts can be used to visualise categorical
Code:
# Direct plot from a dataframe
df.head()
df.col.plot()
# matplotlib
import matplotlib.pyplot as plt
## Creating a graph
### figure size
plt.figure(figize = (7,5))
### Title, x tile and y title
plt.title('test title', fontsize=20)
plt.xlabel('xl abel', fontsize=15)
plt.ylabel('ylabel', fontsize=15)
## ploting first 100 rows
df.loc[0:100,'GKHandling'].plot.bar()
Pie Charts
Code:
import matplotlib.pyplot as plt
df.head()
plt.pie(df.loc[0:10,'GKHandling'], labels = df.loc[0:10,'Name'])
Scatter Plot
Code:
df.head()
df.columns
plt.scatter(df['GKHandling'], df.loc['Overall'])
Histogram
Code:
plt.hist(df.col)
Boxplot
Code:
plt.boxplot(df['col'])
Hope this helps
~P